16.8 (Stokes' theorem)

16.9 (Divergence theorem)

$$d\vec{S} = \vec{n} d\vec{S} = \frac{\vec{n}_{x}\vec{r}_{y}}{\|\vec{r}_{x}\vec{r}_{y}\|} \|\vec{r}_{x}\vec{r}_{y}\| dA$$

$$= \vec{n}_{x}\vec{r}_{y} dA$$

Theorem (Stokes)

$$g\vec{F} \cdot dr = SS(\nabla x \vec{F}) \cdot d\vec{S}$$

Mote: C postuly oriented & closed & is any surface with boundary C

Compute the flu	Library/Michigan/Chap19Sec ux of the vector field $ec{F}=3x^2$ riented downward.		S which is the cone $\sqrt{x^2}$	$y^2 + y^2 = z$, with
(a) Parameteriz	ze the cone using cylindrical co	ordinates (write $ heta$ as thet	a).	
$x(r, \theta) =$				
$y(r, \theta) =$				
$z(r, \theta) =$				
with	$\leq r \leq$			
and	$\leq heta \leq$			
	rameterization, what is $d\mathbf{S}=$ the d and the variable).	,	wer should involve dr and with with compount	
(c) Find the flux of \vec{F} through S .		7	Company	O
flux =			SON-CKONOV.	

rloso, Isino, r

Interpret to give a meaning of curl

=> dd= (0,0,1) dd

Theorem (Divergence theorem)

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{V} \nabla \cdot \vec{F} \, dV$$
Sofu intgil
where enclosed by 5

Any closed sofur

(Als= Plax of F Hay 5 Vol(Y) = 1 RHS = (Any danger of F) (value of V)

The second of th

(1 point) Library/Michigan/Chap20Sec2/Q37.pg

As a result of radioactive decay, heat is generated uniformly throughout the interior of the earth at a rate of around 30 watts per cubic kilometer. (A watt is a rate of heat production.) The heat then flows to the earth's surface where it is lost to space. Let $\vec{F}(x,y,z)$ denote the rate of flow of heat measured in watts per square kilometer. By definition, the flux of \vec{F} across a surface is the quantity of heat flowing through the surface per unit of time.

(a) Suppose that the actual heat generation is $28 W/km^3$. What is the value of ${
m div} \ \vec{F}$? div $\vec{F}=$ (Include units.).

(b) Assume the heat flows outward symmetrically. Verify that $\vec{F}=\alpha\vec{r}$, where $\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}$ and α is a suitable constant, satisfies the given conditions. Find α .

lpha = (Include units.).

(c) Let T(x,y,z) denote the temperature inside the earth. Heat flows according to the equation $\vec{F}=-k\,\,\mathrm{grad}\,T$, where k is a constant. If T is in °C, then $k=28,000\,^{\circ}\mathrm{C/km}$. Assuming the earth is a sphere with radius $6400\,\mathrm{km}$ and surface temperature $20\,^{\circ}\mathrm{C}$, what is the temperature at the center?

 $T= igcomes_{} (ext{degrees C})$

$$\begin{cases}
F.dr = -k & (T(s_0A) - T(0)) \\
C = -k & (70 - T(0))
\end{cases}$$

$$r = (b_1400 + b_1 + b_2) = \int_0^1 d(b_1400 + b_2) b_1400 dt$$

$$F = (dx_1 + dx_2 + dx_3) dx_3 = \int_0^1 d(b_1400 + b_2) b_1400 dt$$

$$F = (dx_1 + dx_2 + dx_3) dx_3 = \int_0^1 d(b_1400 + b_2) b_1400 dt$$

Exercises:

- 1) Compute $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$ for $F = \langle 2y \cos z, e^x \sin z, xe^y \rangle$, on the upper half of the sphere centered at the origin with radius 9
- 2) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ for $F = \langle yz, 2xz, e^{xy} \rangle C$ the circle $x^2 + y^2 = 16, z = 5$
- 1) Compute $\iint_S F \cdot dS$ for $F = \langle exy^2, xe^z, z^3 \rangle$ over the surface bounded by $y^2 + z^2 = 1$ and the x = -1, x = 2
 - (a) Are the points P_1 and P_2 sources or sinks for the vector field \mathbf{F} shown in the figure? Give an explanation based solely on the picture.
 - (b) Given that $\mathbf{F}(x, y) = \langle x, y^2 \rangle$, use the definition of divergence to verify your answer to part (a).

